
1

Explorations of Multi-object Tracking in Videos
Jiaqi Wang, Yang Shi, Sili Wang

Abstract—This paper serves as the course project report of the
CSCI 8000, Advanced topics in machine learning class by Dr.
Sheng Li. In this project, a framework of multi-object tracking
in video is proposed and implemented from base models, the
RetinaNet [1] and the MemTrack network [2]. The base models
are integrated under the constraints of our tracker selection
strategies to perform tracking with not many excessive trackers,
and decent tracking accuracy in multi-object tasks. Because of
the nature of the framework, our method can also detect newly
shown up objects even when it does not show up in the first
frame. The Davis challenge dataset [3] is used for the testing
purpose, and different training schedules are compared in the
experiments. We also propose to further explore the mechanism
of the image comparison for a better tracker management
strategy and compare with the state-of-art multi-object tracking
frameworks as a future direction of this work.

Index Terms—Video, Multi-object tracking, RetinaNet, Image
comparison, Memory mechanism, Attention.

I. INTRODUCTION

Object tracking in videos is a classical computer vision
problem. It consists of not only detecting the object in a scene
but also recognizing the object in each and every frame, so as
to distinguish it from other objects, both static and dynamic.

This research topic starts from image caption. Then it
develops to single object tracking in videos. Tracking mul-
tiple objects in videos is an important problem in computer
vision which has wide applications in various video analysis
scenarios, such as visual surveillance, sports analysis, robot
navigation and autonomous driving. However, there is not too
much work about multi-object tracking.

Our project targets at multi-object tracking in videos. We
propose a framework which combines RestinaNet as the de-
tector and Memtrack as the tracker. When new objects appear
in videos besides the initial components in the first frame in
video, our framework can also capture them. RestinaNet is
firstly proposed in paper [1]. They design a fully convolutional
one-stage detector to evaluate the effectiveness of their exper-
iment loss. The designed and trained simple dense detector
is called RetinaNet. Trackers in this project are designed
using Memtrack. A memory network can be considered as
a combination of memory m and components named input
feature map (I), generalization (G), output feature map (O)
and response (R). The functions of each component are listed
as follows:

1) I converts inputs to the internal feature representation.
2) G updates old memories given the new input.
3) O produces new outputs given the new input and the

current memory state.
4) R converts the output into the response format desired
Given an input, the whole process of the model is shown

in Fig. 1. The process happen in train and test time given a

distinction between such phases, which means memories are
also stored at test time, but the model parameters of I, G, O
and R are not updated.

Fig. 1: The flow of the memory network model.

Main contributions of this work can be summarized as
below:

1) Implement multi-object tracking in videos.
2) Capture the new objects showing up in videos.
3) Object tracking without initial localizations or labels.
4) Integration of tracker validation mechanism.

II. RELATED WORK

A. Video Object Tracking

When we talk about computer vision, objective tracking has
been actively studied for years. It started with single-objective
tracking and has upgraded to multi-objective tracking with the
increased requirement for complex conditions.

For several years, the most successful paradigm for this
scenario has been to learn a model of the object’s appearance
in an online fashion using examples extracted from the video
itself [4]. It owes in large part to the demonstrated ability
of methods like TLD [5], Struck [6] and KCF [7]. The
limitation using a pretrained deep convolutional networks is
that the scarcity of supervised data and the constraint of real-
time operation prevent the naive application of deep learning
within this paradigm of learning a detector per video. To
solve this, ”shallow” methods are applied using the network’s
internal representation as features [8], [9]. Stochastic gradient
descent(SGD) is also used in fine-tune multiple layers of the
network [10]–[12].

From the other hand, we can follow the tracker types
to review the previous work. The trackers can be classified
as classification-based trackers, regression-based trackers and
recurrent-neural-network trackers. Trackers for generic object



2

tracking often follows a tracking-by-classification methodol-
ogy [13], [14], such as work in paper [12], [14]–[16]. Recent
work in [17], [18] have attempted to treat tracking as a
regression instead of classification problem. Also, work in
[19], [20] attempted to treat tracking as a regression instead
of classification problem.

B. Memory Mechanism

Memory networks are firstly proposed in paper [21]. It is
used to solve the problem that most machine learning models
lack an easy way to read and write to part of a (potentially
very large) long-term memory component, and to combine
this seamlessly with inference. Recent paper [22] implies that
memory states help a lot about object template management.
Based on NTM (Neural Turing Machine) proposed in paper
[23], DNC (Different Neural Computer) was proposed to use
different access mechanism to alleviate the memory overlap
and interference problem in paper [24]. NTM is currently
applied to one-shot learning with a new method for reading
and writing memory in paper [25]. Later, a dynamic memory
network is proposed in paper [2] to adapt the template to the
targets appearance variations during tracking.

C. Attention Mechanism

Attention mechanisms in neural networks are about memory
access. To make it easier, it can be described as something of
a misnomer. Attention mechanisms has a wide application in
machine translation [26], image caption [27], entailment Rea-
soning [28], speech recognition [29] and abstractive sentence
summarization [30].

It is firstly proposed in paper [26]. The neural machine
translation aims at building a single neural network that can
be jointly tuned to maximize the translation performance. The
model is shown in Fig.2. The graphical illustration of the
model as below tries to generate t-th target word yt given
a source sentence (x1, x2, ..., xT ). More details can be found
in the paper mentioned above.

Fig. 2: Attention mechanism model.

Based on the traditional attention model, there are a lot of
work studying deeper about its improvements and application.
In paper [27], authors introduce an attention based model
that automatically learns to describe the content of images,
which is the first time that attention mechanism is applied to
image caption. classified as soft attention and hard attention.
Furthermore, researchers try to combine attention mechanism
with other methods. In paper [31], authors propose a hierar-
chical attention network for document classification. In paper
[32], authors present a novel model called attention-over-
attention reader for the Cloze-style reading comprehension
task. They aims to place another attention mechanism over the
document-level attention, and induces ”attended attention” for
final predictions. In paper [33], an architecture based entirely
on convolutional neural networks is proposed, where equip
each decoder layer with a separate attention module is used.

III. FRAMEWORK

In this project, our framework is based on two deep neu-
ral networks: RetinaNet [1] and MemTrack [2]. The object
detection part uses the RetinaNet backbone and the object
tracking part uses MemTrack. In this section, we first introduce
structure of the two deep neural networks, and then show our
framework and explain how we combine this two network to
realize multiple object tracking.

A. RetinaNet

RetinaNet is a single, unified network composed of a
backbone network and two task-specific subnetworks. The
backbone is responsible for computing a convolutional feature
map over an entire input image and is an off-the-self convolu-
tional network. RetinaNet can be built on different backbone
network which have different structure and different number
of nodes. Backbone can influence the efficiency and accuracy
of the RetinaNet.

In this project, we take use of one-stage RetinaNet to detect
new objects. Fig. 3 shows the one-stage RetinaNet network
architecture. It uses a Feature Pyramid Network (FPN) [34]
backbone on top of a feed forward ResNet architecture [35] (a)
to generate a rich, multi-scale convolutional feature pyramid
(b). To this backbone RetinaNet attaches two subnetworks, one
for classifying anchor boxes (c) and one for regressing from
anchor boxes to ground-truth object boxes (d).

RetinaNet introduce the focal loss starting from the cross
entropy (CE) loss for binary classification:

CE(p, y) =

{
−log(p) ify = 1

−log(1− p) otherwise
(1)

In the above y in [−1, 1] specifies the ground-truth class
and p in [0, 1]is the models estimated probability for the class
with label y = 1. For notational convenience, we define pt as:

pt =

{
p ify = 1

1− p otherwise
(2)

and rewrite CE(p, y) = CE(pt) = log(pt).
One notable property of this loss, which can be easily seen

in its plot, is that even examples that are easily classified pt



3

Fig. 3: One-stage RetinaNet network architecture

less than 0.5 incur a loss with non-trivial magnitude. When
summed over a large number of easy examples, these small
loss values can overwhelm the rare class.

A common method for addressing class imbalance is to
introduce a weighting factor a, and then we have:

CE(pt) = −atlog(pt) (3)

A classification subnet and a box regression subnet are used
together to get the object detection result. The classification
subnet predicts the probability of object presence at each
spatial position for each of the A anchors and K object
classes. This subnet is a small FCN attached to each FPN
level; parameters of this subnet are shared across all pyramid
levels. The design of the box regression subnet is identical to
the classification subnet except that it terminates in 4A linear
outputs per spatial location. The output of RetinaNet should
be a set of boxes which indicate the location of objects.

B. MemTrack

Dynamic memory network is a popular framework in object
tracking. The main idea of dynamic memory network is to
store some target information in an external memory and recall
this information to maintain the variations of object appearance
for template-matching. In the object tracking model based on
detection where the targets information is stored in the weights
of neural networks, the capacity of the model is fixed after
offline training. However in a dynamic memory network, the
capacity of the model can be changed by modified the size
of external memory. Which is useful for memorizing long-
term appearance variations. In Memtrack network present by
Yang [2], they defined an initial template as reference. Since
aggressive template updating is prone to overfit recent frames
and the initial template is the most reliable one, they use the
initial template as a conservative reference of the object and
a residual template, obtained from retrieved memory, to adapt
to the appearance variations. The image features are input into
an attentional LSTM, which controls the memory reading and
writing.

Fig. 4: The structure of Memtrack network.

Their algorithm including six parts: Feature Extraction,
Attention Scheme, LSTM Memory Controller, Memory Read-
ing, Residual Template Learning, and Memory Writing. The
structure of Memtrack network is shown in fig.4. The green
rectangle are the candidate region for target searching. The
Feature Extractions for object image and search image share
the same architecture and parameters. An attentional LSTM
extracts the targets information on the search feature map,
which guides the memory reading process to retrieve a match-
ing template. The residual template is combined with the initial
template, to obtain a final template for generating the response
score. The newly predicted bounding box is then used to crop
the objects image patch for memory writing.

In the feature extraction part, an Alex-like CNN is adopted.
The searching space is larger than the template image. At-
tention scheme aim to make the input of LSTM concentrate
more on the target object. To reduce the computational cost,
an average pooling layer is applied on data before feeding it
into LSTM. The LSTM control the length of memory, which
can be write as:

at =

L∑
i=1

at,if
∗
t,i (4)

Fig.5 shows the diagram of memory access mechanism. In
the reading part, memory is retrieved by computing a weighted
summation of all memory slots with a read weight vector,
which is determined by the cosine similarity between a read
key and the memory keys. In the writing part, there are three
cases for memory writing: 1) when the new object template
is not reliable (e.g. contains a lot of background), there is



4

no need to write new information into memory; 2) when
the new object appearance does not change much compared
with the previous frame, the memory slot that was previously
read should be updated; 3) when the new target has a large
appearance change, a new memory slot should be overwritten.

Fig. 5: Diagram of memory access mechanism.

C. Our current framework

Our current framework is shown in fig.6. In the object
detection part, we use RPN feature to detect object, and
comparing the feature from detected objects and the feature
from template bank to give each object a label. This process
will be applied on each single frames and thus we can know
if there is a new object occurred. Then we use Memtrack
structure to tracking each single object with independent
boxes. In this way, we can tracking multiple object in same
time. We also have some constrains to filter the new objects
to avoid overlap or false alarm.

D. Image comparison

To detect the new object, we introduce image comparison
algorithm. After feature extraction part, we compare the new
detected objects with the objects templates in our database to
decide whether if this object is a new object. We use a very
simple built-in python algorithm to calculate the similarity of
two pictures. The algorithm is simply read the RGB value of
the picture and compare it point by point, the difference of
the two pictures can be represent by quadratic sum of the two
pictures. For the pictures with different size, we resize it first
and then make the comparison. We use a threshold to define
whether the new object is already existed on the database. If
it is a new object, we will save that in the memory, if not we
just discard it. With this image comparison algorithm, we can
detect new object which is not occurred in the video at the
beginning.

E. Location comparison

For multiple object tracking, one problem is that sometimes
one single object might be detected more than one time. In this

case, there will be a lot of boxes targeting the same object and
the overlap between boxes will be large. To solve this problem
we add some constrains to the boxes : i if the boundary of new
boxes is too faraway from initial boxes, discard it; ii) if the
center of new boxes have similar location with initial boxes,
discard it; ii) if not, save these new boxes in memory. One
hypothesis is that the initial boxes is reliable, so if the new
boxes too far away from the initial boxes, we suppose they are
false alarm, if the center location is too similar to the initial
boxes we think they are overlapping boxes.

IV. EXPERIMENTS

In this project, we finished the experiments for the three
milestones of our project. We will first introduce the datasets
that we use for the project first, and then discuss about the
experiments we designed for the milestones.

A. Datasets

The Davis 2018 [3] is the testing dataset that we use for
the project. In this dataset, 90 videos of motions of objects
are provided, and some of them are for multi-object tracking.
We employ the videos with quality of 480p for the fast image
processing purpose. Besides, every video sequence come with
the annotations of the objects for detection. It should be
noticed that the Davis dataset originally does not consider the
objects not shown up in the first frame, because of the nature
of the Davis challenge. Fig. 7, 8 are from the same frame in
a video from the Davis dataset. We observe a bench in the
frame, while the bench is not labeled as an object since it
does not show up in the first frame of this video. We take the
annotation images, and use the smallest box that can contain
all pixels in this image as the annotation box, and use the
annotation box as the ground truth for the evaluation part.

Fig. 7: One frame from a
video in Davis dataset.

Fig. 8: The annotation of the
frame shown in Fig. 7.

In the evaluation part, as mentioned, some objects are
not annotated. However, if the tracker recognizes the object,
and the tracked areas obviously are associated with some
certain objects, the tracked area is counted as an object. We
summarize the evaluation metrics in Table I.

TABLE I: Metrics of the evaluation in the proposed frame-
work

Metric Definition
Total Objects (O) The objects in the video sequence.

Correct Trackings (C) The tracking result that covers
the major part of the object.

Missed Objects (M) Objects that major body is not tracked.
False Positives (FP) Trackings that does not cover any object.

Mean Detection Time (T) Mean tracking time for each frame.



5

Fig. 6: One-stage RetinaNet network architecture

In the following experiments, pretrained models are used
in RetinaNet. We leverage the default settings and backbones
for RetinaNet in the pretrained models to get the best out
of the model in object detection tasks in this framework. The
model contains a backbone of ResNet , and pretrained with MS
COCO [36]. Because of the nature of the MemTrack network,
we first evaluate the performance of the proposed framework
that the pretrained RetinaNet only detect the objects on the
first frame, and only use this as the annotations for the multi-
object tracking in MemTrack. Then we add the constraints
proposed in Section Framework and test the performance of
the framework in multi-object tracking tasks. Finally, we also
retrained the RetinaNet with the Davis dataset, to compress
some false positives and compare the performance with the
pretrained model. Since the pretrained model is trained from
MS COCO, dataset, the distribution should be different from
Davis dataset. We randomly selected 10 videos for testing
through the three experiments to keep a better consistency
and provide a better comparison on the performances.

B. Tracking with the First Frame Detected with Pretrained
RetinaNet

We start from using the pretrained RetinaNet only in the
first frame of the videos. The evaluation result is shown in
Table II.

This result shows that our integration of the framework is
successful, yet for the multi-object tracking task, the frame-
work does not fulfill the job directly. We can see on the video
#2, 6, 7, 10 since there are not a lot of objects, the tracker
perform well with a good detection rate and low false positives
or missed objects in these detections. Only in some situations

TABLE II: Experiment result of tracking with only the first
frame detected with pretrained RetinaNet.

Video Index O C M FP T
1 3 3 2 2 0.94s
2 2 1 1 0 0.40s
3 5 3 3 0 0.99s
4 3 2 3 2 0.65s
5 5 3 4 4 1.47s
6 2 2 1 1 0.66s
7 1 1 0 1 0.39s
8 4 2 2 0 0.68s
9 6 0 - - -
10 2 2 0 0 0.67s

Total 33 19 22 10 -

when the object is not shown up in the first frame, the objects
are not tracked.

However, this also lead to missing objects in more com-
plicated situations. For example, in video #8, only 2 out of
4 objects are tracked. The reason is that these objects do not
show up in the first frames. In the more complicated multi-
object tracking tasks in video #1, 3, 4, 5, this framework
cannot track all objects and with a high missing or false
positive rate. In these situations, the tracker can initially track
the objects, but later when the objects deform, or shift rapidly,
the tracker cannot follow the objects in this situation, and
especially when objects overlap, the trackers have a high
chance of lose the object. In video #9, the framework even
fails to track since it cannot detect any objects in the first
frame. This result has put us to the work in using RetinaNet to
detect all frames in a video sequence. We use this information
to compare with the trackers to decide if a new tracker is
necessary, or if the current tracker is already not valid.



6

C. Tracking with All Frame Detected with Pretrained Reti-
naNet

The evaluation of the experiment that we use RetinaNet for
all frames in the tracking task is shown in Table III.

TABLE III: Experiment result of tracking with all frames
detected with pretrained RetinaNet.

Video Index O C M FP T
1 3 3 3 2 5.89s
2 2 2 1 1 5.37s
3 5 5 1 2 5.76s
4 3 3 1 7 5.21s
5 5 4 2 7 5.71s
6 2 2 0 0 5.20s
7 1 1 0 0 4.65s
8 4 4 0 0 6.01s
9 6 3 3 1 4.76s

10 2 2 0 0 5.16s
Total 33 29 11 22 5.31s

From this evaluation result, it should be noticed that the
detection rate of objects obviously increased. Out of 33
objects, 29 are tracked. The reason behind this rise is that
our framework is able to detect the objects not shown up in
the first frame, and track them. Especially in the video #1, 2,
3, 8, the trackers outperform the previous version.

We also see some drawbacks in this version. First of all,
the false positives increased. in this framework, the number
of untracked objects decreased, but since the RetinaNet is
pretrained in another dataset, the false positives increased a lot.
Another issue of this framework is that the averaged tracking
time in each frame is too long for the video object tracking
tasks. For this issue, it is because of the excessive trackers that
generated by the framework. Since the more trackers the more
computation is needed for a frame, reducing the excessive
trackers is needed. This issue is still under our investigation
currently.

To reveal the extreme performance of our proposed frame-
work, we retrain the RetinaNet with the Davis dataset to see
if the false positive would drop, because that our assumption
is based on that the pretrained model detects some objects
that are not the real objects, and a smaller training dataset can
reduce false positives lead by the pretrained model.

D. Tracking with All Frame Detected with Retrained Reti-
naNet

We retrained RetinaNet with the same backbone network of
the pretrained model, which is ResNet. The default settings of
the training is employed. The batch size is 1, and the epochs
is 50. To accelerate the training process, we used NVIDIA
GeForce GTX 1080 Ti GPU for the training process. The
retrained model is then applied in our proposed framework
and the evaluation result is shown in Table IV

TABLE IV: Experiment result of tracking with all frames
detected with retrained RetinaNet.

Video Index O C M FP T
1 3 3 0 0 2.07s
2 2 1 1 0 1.61s
3 5 3 2 2 1.89s
4 3 2 1 3 1.11s
5 5 1 4 0 0.45s
6 2 2 1 0 0.90s
7 1 1 0 0 0.72s
8 4 2 2 0 1.39s
9 6 5 2 0 2.31s
10 2 1 1 0 0.46s

Total 33 21 14 5 1.25s

The experiment result shows that with the retrained model,
the false positive dropped obviously. This confirms with our
assumption that the false positives are mostly generated from
the pretrained model that some complicated non-objects are
considered as objects by the pretrained model. This does not
happen in the retrained model, and the false positive dropped
to only 5 throughout the videos. But since the annotation is not
complete, as some of the objects are not labeled in our training
data, some objects are missing. Even though, the missing
objects are still a lot better than the first experiment, since
it does not have the issue of losing trackers. The performance
difference in the video #9 shows especially the improvement of
our models. The content of this video is that several goldfishes
In the second experiment, since the pretrained model does not
have the samples of goldfish, the detection of the goldfish
failed, and led to the low performance in this video.

The evaluations of our experiments for the framework that
we propose in this course project show that our framework
performs multi-object tracking without annotations with a
decent detection rate, and it also detects the objects shown
up in later frames of the videos. However, there are also some
current limitations from our framework. We will introduce the
limitations in the next section.

V. CONCLUSION AND FUTURE PLAN

In this project, a multi-object tracking framework for videos
that tracks the objects show up in any frame is proposed,
implemented and evaluated. The framework integrates the
RetinaNet as the detector, and the MemTrack network as the
tracker. The comparison of trackers and location constraints
are also introduced in the integration for a better performance
of our framework.

From our evaluation, we find that our framework is able to
produce accurate tracking for the objects in videos. However,
there are still some issue with our framework, and we plan to
polish the framework to a better performance.

The current issues of the framework includes three com-
ponents. The computational speed is slow, and cannot meet
the requirement of fast tracking in videos; the current im-
age comparison mechanism is simple yet effective, while an
automated thresholding technique can potentially benefit this
process; the current dataset is not a major dataset for the multi-
object tracking task, as it does not label the objects shown up
in the later frames in videos.



7

To address the mentioned issues, we have plans for the
future work. We plan to explore more on the object detection
network, especially for the lightweight ones. The current
RetinaNet is accurate, but not fast enough for the task. We
will also compare with popular networks such as YOLO to find
more to learn from. To address the issue in image comparison,
we plan to use deep neural networks to extract features in
the images, and compare the extracted features. The detailed
fashion is yet to be decided, but we will transfer the current one
into an automated and more accurate one. We will also look
into the state-of-art multi-object tracking datasets to provide
better evaluations for our proposed framework.

Multi-object tracking is a popular and interesting topic in
computer vision field due to the vast application areas. We
believe that with more development our proposed framework
will be able to achieve a more accurate and faster tracking in
this task.

VI. MY WORK AND CONTRIBUTION

Firstly, I am grateful for all the efforts of everyone in the
team. Yang is a great fellow to work with and I we enjoyed a
nice time together. My work and contribution are required to
list as below:

1) I took charge of the third and fourth sections.
2) I proposed to solve a multi-objective tracking problem.

The main targets consist of multi detection, new objec-
tive detection and better image comparison mechanism.

3) I led the team to propose such a framework using
RetinaNet and MemTrack.

4) I chose the dataset after comparison. Then I finished
most parts of the algorithm implement.

5) Yang and I run the experiments and analyze the results
together.

6) Yang and I discuss the future work and target at ICCV
2019.

REFERENCES

[1] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” IEEE transactions on pattern analysis and
machine intelligence, 2018.

[2] T. Yang and A. B. Chan, “Learning dynamic memory networks for object
tracking,” arXiv preprint arXiv:1803.07268, 2018.

[3] “The 2018 DAVIS challenge on video object segmentation,” Mar. 2018.
[Online]. Available: http://arxiv.org/abs/1803.00557

[4] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. De-
hghan, and M. Shah, “Visual tracking: An experimental survey,” IEEE
transactions on pattern analysis and machine intelligence, vol. 36, no. 7,
pp. 1442–1468, 2014.

[5] Z. Wu, “Multi-object tracking,” in Human Re-Identification. Springer,
2016, pp. 23–26.

[6] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng, S. L. Hicks,
and P. H. S. Torr, “Struck: Structured output tracking with kernels,”
IEEE transactions on pattern analysis and machine intelligence, vol. 38,
no. 10, pp. 2096–2109, 2016.

[7] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
2015.

[8] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical con-
volutional features for visual tracking,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 3074–3082.

[9] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Convolu-
tional features for correlation filter based visual tracking,” in Proceedings
of the IEEE International Conference on Computer Vision Workshops,
2015, pp. 58–66.

[10] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung, “Transferring rich feature
hierarchies for robust visual tracking,” arXiv preprint arXiv:1501.04587,
2015.

[11] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual tracking with
fully convolutional networks,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 3119–3127.

[12] H. Nam and B. Han, “Learning multi-domain convolutional neural
networks for visual tracking,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 4293–4302.

[13] Z. Kalal, K. Mikolajczyk, J. Matas, and Others, “Tracking-learning-
detection,” IEEE transactions on pattern analysis and machine intel-
ligence, vol. 34, no. 7, p. 1409, 2012.

[14] N. Wang, J. Shi, D.-Y. Yeung, and J. Jia, “Understanding and diagnosing
visual tracking systems,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 3101–3109.

[15] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning
discriminative saliency map with convolutional neural network,” in
International Conference on Machine Learning, 2015, pp. 597–606.

[16] K. Zhang, Q. Liu, Y. Wu, and M.-H. Yang, “Robust visual tracking via
convolutional networks without training,” IEEE Transactions on Image
Processing, vol. 25, no. 4, pp. 1779–1792, 2016.

[17] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps with
deep regression networks,” in European Conference on Computer Vision.
Springer, 2016, pp. 749–765.

[18] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr,
“Fully-convolutional siamese networks for object tracking,” in European
conference on computer vision. Springer, 2016, pp. 850–865.

[19] S. E. Kahou, V. Michalski, and R. Memisevic, “RATM: recurrent
attentive tracking model,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops, 2015, pp. 1613–1622.

[20] Q. Gan, Q. Guo, Z. Zhang, and K. Cho, “First step toward model-
free, anonymous object tracking with recurrent neural networks,” arXiv
preprint arXiv:1511.06425, 2015.

[21] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” CoRR, vol.
abs/1410.3916, 2014. [Online]. Available: http://arxiv.org/abs/1410.3916

[22] T. Yang and A. B. Chan, “Recurrent filter learning for visual tracking,”
arXiv preprint arXiv:1708.03874, 2017.

[23] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv
preprint arXiv:1410.5401, 2014.

[24] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou,
and Others, “Hybrid computing using a neural network with dynamic
external memory,” Nature, vol. 538, no. 7626, p. 471, 2016.

[25] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“One-shot learning with memory-augmented neural networks,” arXiv
preprint arXiv:1605.06065, 2016.

[26] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[27] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in International conference on machine learning,
2015, pp. 2048–2057.

[28] T. Rocktäschel, E. Grefenstette, K. M. Hermann, T. Kočiskỳ, and
P. Blunsom, “Reasoning about entailment with neural attention,” arXiv
preprint arXiv:1509.06664, 2015.

[29] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Advances in neural
information processing systems, 2015, pp. 577–585.

[30] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” arXiv preprint arXiv:1509.00685,
2015.

[31] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in Proceedings of the
2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2016, pp.
1480–1489.

[32] Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu, “Attention-over-
attention neural networks for reading comprehension,” arXiv preprint
arXiv:1607.04423, 2016.

[33] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” arXiv preprint
arXiv:1705.03122, 2017.



8

[34] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J.
Belongie, “Feature pyramid networks for object detection.” in CVPR,
vol. 1, no. 2, 2017, p. 4.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[36] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, Microsoft COCO: Common Objects in
Context. Cham: Springer International Publishing, 2014, vol. 8693,
ch. 48, pp. 740–755. [Online]. Available: http://dx.doi.org/10.1007/978-
3-319-10602-1˙48


